
Transformer needs NMDA receptor nonlinearity for
long-term memory

Anonymous Author(s)
Affiliation
Address
email

Abstract

The NMDA receptor (NMDAR) in the hippocampus is essential for learning and1

memory. We find an interesting resemblance between deep models’ nonlinear2

activation function and the NMDAR’s nonlinear dynamics. In light of a recent3

study that compared the transformer architecture to the formation of hippocampal4

memory, this paper presents new findings that NMDAR-like nonlinearity may be5

essential for consolidating short-term working memory into long-term reference6

memory. We design a navigation task assessing these two memory functions and7

show that manipulating the activation function (i.e., mimicking the Mg2+-gating of8

NMDAR) disrupts long-term memory formation. Our experimental data suggest9

that the concept of place cells and reference memory may reside in the feed-forward10

network and that nonlinearity plays a key role in these processes. Our findings11

propose that the transformer architecture and hippocampal spatial representation12

resemble by sharing the overlapping concept of NMDAR nonlinearity.13

1 Introduction14

Figure 1: (a) Schematic diagram of Mg2+-gated
NMDAR modulating synaptic plasticity. (b) Mg2+-
gated NMDAR-like activation function. (c) Gaus-
sian Error Linear Unit (GELU) activation function
in transformer’s feed-forward layers.

In the hippocampus, NMDAR is regarded as15

an essential component that mediates synap-16

tic plasticity, memory formation, and spatial17

representation of place cells [9, 18, 6]. It has18

unique nonlinear dynamics which is modulated19

by Mg2+-gating [13, 10], serving as a switch20

for synaptic plasticity and long-term memory21

formation [1, 17, 12] (Fig. 1a). This work is22

inspired by 1) the fascinating resemblance of23

NMDAR with the nonlinear GELU activation24

function that is widely used in the feed-forward25

networks of modern transformer architectures26

(Fig. 1c) [5, 4, 2] and 2) recent models relating27

transformer’s self-attention mechanism to hip-28

pocampal formation [21, 20]. These findings29

motivated us to ask a question; is the NMDAR-30

like nonlinearity in the feed-forward network31

of transformers required for long-term mem-32

ory formation and spatial place cell represen-33

tation?34

To address this question, we design a spatial35

navigation task in a 2D grid environment that36
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assesses two different memory types in neuroscience [15, 16]: working memory and reference37

memory. Working memory controls the events from a within-trial, while reference memory controls38

across-trials from the unchanging environment. Our experimental data suggest that NMDAR-like39

nonlinearity in feed-forward networks of the transformer is essential for reference memory formation40

and place cell representation.41

2 Methods42

Relating activation function in transformers with NMDAR nonlinearities NMDAR’s nonlinear43

dynamics arises from the voltage-gated Mg2+ repulsion at the NMDAR channel’s pore [13, 10]44

(Fig. 1a). Previously, Mg2+-gated NMDAR open probability p has been shown to follow ion blockade45

model of A where x represent an input voltage, α = [Mg2+]/KMg2+ is a parameter determined by46

[Mg2+], KMg2+ is a dissociation constant, and β is a temperature constant. As experimentally shown,47

increasing the Mg2+ level in the brain can enhance long-term memory formation [17]. We observed48

the NMDAR’s nonlinear dynamics of the IV curve (current-voltage relationship) in the synapse49

to closely resemble the form of the GELU activation function. GELU is a widely used activation50

function in transformers (Fig. 1c; GELU(x) ≈ xσ(1.702x) where σ is the sigmoid function) [5, 4, 2].51

Inspired by this resemblance, we define a new nonlinear activation function (Fig. 1b) with α parameter52

which modulates dynamics as follows:53

NMDAα(x) = xpα(x) =
x

1 + αe−x
. (1)

To investigate this NMDAR-like nonlinearity in transformer memory formation, we replaced the54

GELU(x) activation function with NMDAα(x) in a standard transformer model.55
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Figure 2: Sensory observation prediction task in a
2D grid, where dotted squares indicate the target
position to predict given a sequence of past actions
and observations. Gray (black) letters represent
the unvisited (visited) places.

Transformers learn spatial navigation tasks56

We train the transformer model to predict the57

subsequent sensory observation of an agent that58

randomly walks a 2D grid environment [20]59

(Fig. 2). A sequence of previous [Action (a),60

Observation (x)] pairs are an input to the model,61

and the subsequent observation is masked for62

prediction. Instead of using positional encod-63

ing [19] that is commonly used in transformers,64

we employ the recurrent neural network (RNN)65

for encoding the sequence of actions [20]1.66

We generate the embedding vectors of sensory67

observation (x) sequence with a word embed-68

ding layer, but the embedding vectors of the69

action sequence is generated by RNN; et+1 =70

tanh (etWa), where et is the positional embed-71

ding at step t, and Wa is the action-dependent72

trainable weight matrix. The input is given by73

{[x1, e1], [x2, e2], . . . , [xt, et]}; the initial posi-74

tional embedding e1 is sampled from a normal distribution and we mask the last observation xt. We75

generate N maps of 11× 11 2D grids. A random sensory observation among ten letters is placed at76

each position on each map. Agents can move ‘up’, ‘right’, ‘down’, ‘left’, or ‘stay’. An agent starts at77

a random position and initiates a random walk on the map for 2,048 steps for each trial.78

The model is trained with the softmax cross-entropy loss and predicts the subsequent sensory79

observation (i.e., dotted squares). We evaluate two types of memory: working memory (WM)80

and reference memory (RM)2. When the prediction on nodes that were previously visited during81

the random walking is incorrect, it will count as a WM error (see Fig. 2 left). On the other hand,82

when the prediction on unvisited nodes is incorrect, it will count as a RM error (see Fig. 2 right).83

Minimizing the RM error by memorizing input sequences is infeasible; the possible number of84

1Encoding actions with RNN is closely related to the state-of-the-art neuroscience model of hippocampus.
2Whittington et al. [20] only evaluated the WM error based on our definitions of WM and RM.
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sequence configurations is exponential since the input sequence is randomly generated at each trial.85

To solve this task, the model should be able to 1) understand the abstract structure of 2D space, 2)86

infer which map it is on from input sequence data, and 3) memorize what sensory observation is87

placed at each position in that map. See Appendix A.1 for training, evaluation, and transformer model88

details.89

3 Results90

WM error & RM error The feed-forward network (FFN; see Fig. 4a) in the transformer model91

consists of two linear layers with the NMDAR-inspired activation function NMDAα (Eq. (1)). To92

measure the impact of non-linearity α in FFNs, we train the transformer models with different93

values of α in [0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] and evaluate WM and RM errors on the train maps (i.e.,94

familiar maps) and test maps (i.e., novel maps).95

Figure 3a shows that the RM error on the train maps is rapidly decreased over train trials when α96

is larger than zero, with a larger improvement for increasing α. The RM error on the novel maps,97

however, is nearly constant at 0.9 (= 1 − 1/(number of letters)) for all α. Unlike the RM, Fig. 3a98

inset shows that WM is performing well on novel maps, which had not been shown during the99

training. This finding suggests that RM is not used for predicting the visited nodes. Training the100

models on different numbers of maps N , Fig. 3b shows that increasing α helps improve RM and the101

trend of improvement is consistently shown for N = 32, 48, and 64 cases. As N grows, the RM102

error increases as more ‘what’-‘where’ (letter-place) pairs have to be memorized.103

Place cells in FFNs Place cell is a neuron in the hippocampus which fires at a particular place of104

the environment [14]. Selective impairment of NMDAR in hippocampal CA1 disrupts place cell105

emergence and long-term memory formation [18, 6, 11]. We investigate the role of neurons in FFNs106

and self-attention layers by measuring the neuron’s place specificity. We measure the place cell score107

by defining a K×K 2D grid environment as graph G = (V,E) and building a sub-graph G = (V, E)108

of all connected components from the source node imax where the neuron fires maximally; directed109

edges of sub-graph G are generated by connecting high to low firing nodes. We run depth-first-search110

from imax. Given G and G, the place cell score is111

Place cell score = γ

∑
i∈V ρi∑
i∈V ρi

, (2)

where γ = 1− |V∗|/|V | is a discount factor and V∗ is a set of nodes from sub-graph without imax112

and leaf nodes during depth-first search. ρi denotes a firing rate at node i. We record the firing113

rate ρi of neurons over a random walking trajectory with 105 steps in one of the training maps.114

Then we measure the place cell scores of neurons in FFNs and self-attention layers. The place cell115

score is 1 when the neuron is firing only at a certain node; the score is 0 when the neuron is firing116

homogeneously across all nodes.117

(a) (b)

Figure 3: (a) Reference memory errors over training trials for training (familiar) maps and testing
(novel) maps for N = 32 where N is the number of training maps. Inset: working memory errors
on the novel maps over training trials. (b) Reference memory errors over different values of α and
N . Error bars and shaded areas represent the standard deviation of errors from three independently
trained models.
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Figure 4: Reference memory-related place cells selectively emerge in the feed-forward layer but
not in the self-attention layer along with α increase. (a) The transformer architecture used in the
current study. (b, c) Example rate maps with place scores in feed-forward layers and self-attention
layers at α = 10; from top left (high) to bottom right (low) (d) Place cell score distribution in
feed-forward layers change along with α modulation. (e) Place cell score distribution in self-attention
layers does not change along with α modulation. (f-g) Scatter plot of average place cell scores and
reference memory errors. r and p denote Spearman’s rank correlation coefficient and significance
score, respectively.

Fig. 4b and 4c show the rate maps of neurons with place cell scores in the FFNs and self-attention118

layers, respectively (Fig. 4a). As can be seen, our metric well represents place specificity. Fig. 4d119

and 4e show the distribution of place cell scores in FFNs and self-attention layers with different values120

of α. As we increase α, the place cell score distribution found in FNNs gets positively shifted (see121

Fig. 5 for rate maps for α = 0, 1.0, and 10.0 in Appendix A.2), whereas place cell score distribution122

in the self-attention layers remains. In addition, Fig. 4f and 4g show a relationship between the123

average place cell score and RM error for each α. While average place cell scores in the self-attention124

layer show no correlation with RM errors whatsoever, neurons in the FFN layer exhibit substantial125

correlation. These results imply that NMDAR-like nonlinearity in FFNs induces RM formation and126

the emergence of place cells.127

4 Discussion and Conclusion128

Whittington et al. [20] showed that softmax neurons in the self-attention layer behave like place129

cells and demonstrated that changing the softmax function to linear slows the WM learning process.130

However, the role of neurons in FFNs has not been studied. We demonstrate for the first time that131

place cells could emerge in transformers’ FFNs, which we show by testing the emergence of place132

cells in FFNs with an NMDA-inspired activation function. Even though there are trainable parameters133

in the self-attention layer, the quantitative analysis of the place cell score indicates that most of the134

RM is stored in FFNs. Our results agree qualitatively with previous NMDAR impairment experiments135

from neuroscience: 1) hippocampal CA1 NMDAR perturbation does not impair WM [8], 2) changing136

NMDAR Mg2+-gating (changing α in this work) enhances or disrupts long-term memory formation137

[17, 12], 3) NMDAR is required for long-term stabilization of newly forming place fields [11, 6].138

Our contribution is at showing these patterns experimentally for the first time.139

Our research has exciting future directions. The current study only examined what-where memory140

using a sensory observation task in a static environment. However, our real-world environment is141

changing dynamically. Unfortunately, modern deep learning systems are generally incapable of142

adapting to a dynamic environment or reordering sensory inputs. In future work, we intend to explore143

what-where-when memory, called episodic memory, in transformer and other deep models.144
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A Appendix244

A.1 Training, evaluation, and model configuration details245

All runs used the same training method and model configuration except for the nonlinearity α of246

NMDAα activation function. We used TransformerXL [3] with an extended memory length of 32247

and segment length of 32 so that working memory error is measured within a sequence length of248

65(= 64+1; 1 for the masked sensory input); i.e. a node that the agent had never visited within recent249

64 steps is treated as an unvisited node. The model consisted of two layers with a word embedding250

dimension of 256 and a positional embedding size of 256. The input embedding is concatenated251

vector [x, e] of the word embedding x and positional embedding e so that the input embedding252

dimension is 512. The number of heads in the self-attention layer is 8 and the number of neurons in253

the feed forward net (FFN) is 2,048. The dropout rate is set to 0.1 and the maximum clip norm of254

gradient is set to 0.25. We employed ADAM [7] optimizer and a learning rate schedule with a linear255

decay from 0.0001 (start) to 0 (end). We ran 512 random walk simulations in parallel for collecting256

training trajectories. The total number of random walking steps is 2,048 for each simulation so the257

total number of gradient steps for each run was 512 (batch size) × 2,048 (total number of steps in a258

trial) × 200 (number of trials). All runs were performed on a single NVIDIA TITAN V GPU.259

A.2 Analysis details of place cell distribution in transformer260

We plot each place cell score distribution with neurons from 3 independent experiments. For the261

self-attention layer, the total number of neurons in the softmax layer is 65 (number of sequence262

length) × 8 (number of head) × 2 (number of layers). For the feed-forward networks, the total263

number of neurons in the feed-forward layer is 2048 (number of neurons) × 2 (number of layers).264

Rate maps of neurons with top-64 place scores in FFNs with varying α are shown in Figure 5.265

Figure 5: Rate maps of neurons with top-64 place scores in FFNs with varying values of α; α = 10
(left), α = 1 (middle), and α = 0 (right).
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